126 New Trends in Software Methodologies, Tools and Techniques
H. Fujita and 1. Zualkernan (Eds.)

10S Press, 2008

© 2008 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-58603-916-5-126

The Ultimate Systems Development
Method Based on Finite State Machine

Zenya KOONO='and Hui CHEN®
“Representative, Creation Project
bInformation Science Center, Kokushikan University

Abstract: This design method stands upon three bases. The first is to use a finite

state machine (FSM) mode! of around three states, where the design is very easy.
The second is to use an event driven OS, which enables direct execution from the
specification level to the final implementation model. The third is the hierarchical
architecture of the above-mentioned FSM’s, which minimizes the software size.
This method features high productivity and high quality. Although it is a
development for embedded systems, it may be applicable to any systems as an
ultimate design method.

Keywords: Embedded system, Systems design, Hierarchical decomposition of
concept, Software size, Documents, FSM, Event driven OS, SDL, Automatic
design.

Introduction

The purpose of this paper is to propose an ultimate development method for primarily
embedded systems, which may also be used for systems in general.

An “Embedded System” is the name for a type of product, which was formerly a
hardware product, but is currently controlled by software. An example of is a “digital
camera”. Formerly all cameras were mechanical hardware including their control, but
now most cameras are “digital cameras” controlled by software. As this trend grows
rapidly, it has become one of the main topics of discussion in the software field. As for
the implementation technologies, however, there are various views and much confusion.

Recently, experts acknowledge that “applications of Model Driven Architecture
(MDA)” are a standard process for embedded systems. The author’s view is close to
this, but more fundamental and more extensive. Both are based on a “finite state
machine (FSM)” model, with which most software people have not yet become
familiar. As this paper reports procedures for defining this method, it may be a good
opportunity for readers to integrate this with what they already know of MDA.

Section 2 explains the specialities of embedded systems and, outlines the concepts
of this process. Section 3 explains the procedures involved. A design in repeating
hierarchical decomposing is the prerequisite. One of the key ideas, the design
procedure for an elementary FSM of around 3 states, is reported in 3.2. In order to
show the best practice and understand how to be automated in future, the detailed

' Corresponding author: Zenya Koono, Representative, Creation Project, Honfujisawa 2-13-5, Fujisawa,
Kanagawa 251-0875, Japan; E-mail: koono@vesta.ocn.ne.jp

Z. Koono and H. Chen / The Ultimate Systems Development Method 127

procedures are disclosed. The second key idea, the design of the hierarchical
architecture, is described in 3.3. The third key idea of an event driven OS is introduced
in 3.4. All these reported here are best practices, and have been accumulated through
repeated developments using FSM’s, and have been applied in the education of around
100 teams of university students. Section 4 describes the main results. Section 5 is
discussions on this method.

2. Design Philosophy of this Development Method
2.1 Specialties of Embedded System

There have been many discussions on the specialties of embedded? systems. There one
has yet to be discussed. _Embedded system suppliers are working in_a_free but
competing market. [1](Cf. usual software vendors have not been working in such free
and competing markets.) Managements are eagerly pouring excellent people and R&D
investment into each field for achieving the higher technology needs to win this
competition. Also, all hardware engineers have improved their technologies in each
field, and have attained great expertise therein.

There is another substantial difference between the embedded software and the
usual software. Most software has a fixed input-to-output relation; therefore it may be
said to be “combinatorial logic”. An embedded system is usually for the control of
hardware with various states; therefore embedded system software is “sequential logic”.

Any hardware logic design textbook says that the “sequential logic” part must be
implemented using memory for storing states, and the rest may be implemented by
“combinatorial logic”. It is the same also in software. Embedded system software
needs modeling by Finite State Machine (FSM). Usual MDA uses an automatic
generation for implementation in current OS, but this system uses an event driven OS,
and thus it becomes possible to execute from the specifications to_the final code directly.

10 . : . 3.4
ol Trendofos / Software size
size of
5 main frame 6
'g computers/ Number of features
4F L
E
=]
g 4
ER _
g
S 1.0
Z. 1= Program area 2+
0.49
L ' , Year 0 I |
1965 1970 1975 1980 Sys X Sys Y Sys 7z
Figure 1. Increasing trend of software Figure 2. Software size

Let us examine a technical trend. Figure 1[2] shows the increasing trend of the
software size and the number of features from a paper on the world’s first large

128 Z. Koono and H. Chen / The Ultimate Systems Development Method

embedded system No.1 ESS?[3]. The horizontal axis shows years and the vertical axis
shows the software size and the number of features both on a normalized scale. Both
graphs show the same trend of approx. 10% increase/year. The finder, Koono, found
that this appears both in hardware and software, and the additions of mother bodies of
major functional enhancement (Data Base and Data Communication) in the OS caused
the rapid growth trend shown by the dotted line. This finding stimulated NTT, and they
also found that their communications software showed the same trend. Thus it was
accepted as a general trend of these technologies. In the middle of the 1990’s, (namely
to increase 1.1°°= 17.5 times), the software size of most major switching systems had
reached several mega lines, following this trend. This increasing trend still appears now.

The figure shows following:

If the size of the mother body is large, it not only invites a large initial
development cost but also a large updating (so-called maintenance) cost.

Software size is a crucial factor in software. Figure 2[4] shows the sizes of the
central part of the control software of the three systems of a kind of embedded system.
The differences are as follows:

* Software sizes, normalized by Y, are Z=3.4 : Y=1.0 : X=0.49 respectively.

Probable causes of each:

*System Z project had been developed, following the client’s request, by software

people not accustomed to this field.

*System Y project was conducted by an experienced leader in this field.

*In system X project, “the large software” had annoyed people previously, and they
adopted “mutually independent FSM’s” for a substantial reduction of software
size.

Most characteristics of human work distribute in lognormal distribution, where it
ranges from 1/3 times to 3 times of the mean value respectively[5]. The above samples
correspond to the largest, the mean, and the smallest respectively. The sofiware size is a
reflection of the organization’s technical ability accumulated in order to compete
successfully.

2.2 Design Concept of this Development Method

Major design concepts of this method[1,6] are listed below:

The strongest motivation is to compete successfully. The organization has to adapt
the organization and take strategies to succeed. The usual organization provides a profit
center for each business. In an embedded system, in order to win, the “systems
engineer” group is the center and exerts the greatest power on the following “software”
group and the “hardware” group exerts pressure on the production group, but it takes
the all responsibility of the business. Therefore, “systems engineer” is enthusiastic in
R&D, and invests a lot effort both in design automation and manufacturing automation.

2 In 1965, the world first computer controlled telephone-switching-system (called No. 1 ESS) started services
replacing a huge mechanic-electric telephone switching system. It was the world first large embedded system,
which Bell Telephone Laboratories, AT&T (a giant in communications) developed. In the same period, IBM
(a giant in computer) began to ship System/360, and American Airline (a huge computer user) started a world
first on-line seat reservation service. These were world level topics at that time.

Z. Koono and H. Chen / The Ultimate Systems Development Method 129

The following are some strategies, of which this paper discusses the major points:
1. Minimize the cost, which is (largest productivity) with (minimum software size).
In hardware, they use (the least numbers) of (the cheapest components).
Similarly to this, they require (the least software size) in (the easiest way
manufacturing).
*In this method, software is basically FSM, and an event driven OS, named
Midas[23] is used for controlling FSM software.
*In FSM, the easiest to design is an elementary FSM of around three states.
*In order to make the software size the minimum, the system is all composed
of mutually independent elementary FSM, similarly to ‘“combinatorial”
software.
*In order to develop the software after the “systems engineer” group, various
software design automations should be taken.
2. High quality throughout the products’ life[5].
* Leave accurate and correct documents to cover all the necessary areas.
* Design in each small step and do strict, rigorous and careful checks.
* Rational ways of testing.
3. Strategy for advance
*Evolve to include all the design
* Enhanced R&D, including evolving design automation.
* Feedback so as not to repeat the same errors.
Those aspects not discussed here will be mentioned later in other
sections.

3. Core Technologies of This Method

3.1 Repeating the Hierarchical Decomposition of the Concept

| Program design *
Data ﬂow\ f Flowchart Coding
design design
A
Spec | Data flow dia. Yi:_l Flowchart ¥ Source code

D
a Clock()

{
t
a ObtainTime()
g | o Lo M ObtainHands()
1 \(——/ Display()

Cloc Shann |
o 1 Hr Y= hunj " | — !
w Mir] Obtain cin I [
[sed N _ ObtainMinHnad
d hand : {
d 4in 2 A

e lomm wgle | ' b el : ObtainDe greeOfMinHand()
§ T{Hr of minhand Angl : -Obmmwnd\hot' : ObtainWidthOfMinHans()
E] o Obiain widh], wolward |2 | ¢ g 2 ObtainLengthOfMinHnad
n Obtain length | \| g :
- of i b I R =T L

Figure 3. Design records of clock program

130 Z. Koono and H. Chen / The Ultimate Systems Development Method

Design in this system follows the principle of repeating the hierarchical decomposition
of the fundamental concepts for intentional activities. It is a functional model of human
cerebrum in its best mode as published in SOMET06[8,9,10].

Figure 3{10,11] shows the design record of a “clock” program. It is the combined
use of graphic and natural language (hereafter, this includes scientific and engineering
terms). The rectangular box with a semi-circle at the top and bottom shows the data,
and a square box shows the function. The data flow begins with data, and repeating
function and data, ends with data. The topmost section of the data flows on the left
edge is the specification, “clock.” By adding data at both sides, the second section is an
elementary data flow of the “clock,” which is_a parent concept.

It is decomposed to form the hierarchically detailed data flows below, consisting
of the three elementary data flows of “obtain clock”, “obtain hands” and “display” in
a serial manner® as the children concepts. (Here, a flowchart starts from a compressed
barrel symbol on “obtain time.” It is also shown in the center of the figure, and the
source code lines, corresponding to it, are shown on the right side of the figure. These
are specialties inherent in software, where a control flow is needed.) Next, among the
children, that for “obtain hands” is shown in the next level data flow, which is
decomposed to three data flows in a parallel manner.

By thus repeating hierarchical concept decompositions, each concept becomes
simple enough. In the figure, an example of “obtain angle of minutes” is shown. Then it
is expressed by the source code of a programming language as an implementation mean.
These repeating hierarchical decompositions are the essential operation in_design.
The authors developed an automatic software design system as reported in
SOMET06]8,9].

a b ¢
ot Nurber of childen
2t 2 ‘
5 g Average 203 &
g0 = g
£ 2] g
= i
0 2 4 6 8 123456789 1234567
Trennber o dilden Theruntber of childen Trennberd favin
Figure 4. Hierarchically Figure S. Expansion rate

expanding network

A hierarchical network, shown in Figure 4[7,11], models the entire operation.
Eventually all the expansion rates in Figure 3 are all 3. But the average or the optimum
seems to be a little less than 3, probably e=2.7182... Figure 5[11,5] shows several field

> Myers® STS division [12]. When an elementary data flow may be regarded as a flow of information
conversions, the optimum intersection is to divide it to three mutually independent parts, by two abstract data,
named the most gbstract points (MAP). The input side MAP is the most distant concept from the input still,
still keeping the color of the input, while the output side MAP is the most distant concept from the output,
still keeping the color of the output. The input side is called as Source, the center is Transform, and the
output side is Sink. As they are independent, this gives the minimum software size partitioning. Although
Myers applied this only at the highest first level, it is extended to be used anywhere when possible.

Z. Koono and H. Chen / The Ultimate Systems Development Method 131

data of software design (a and b) and logic design (c). As the authors reported in

SOMETO07[11,5], the various characteristics stem from the human characteristics. The

average expansion rate is another one of them, and it is the optimum point for a human

when the person involved feels it to be the best.

These show that repeating hierarchical decompositions is a function of human
cerebrum for intentional activity, and following are the best practices of design[11,5].

1. Decompose a concept into a small step of design as expressed by natural language,
using data flow (and flowchart or equivalent if needed).

2. For the checks, leave design documents, recording each of the detailing steps.

3. After each small step of design, do desk checks carefully, rigorously and repeatedly
on what was made during the preceding design and recorded in the documents.

The principle in this design, for making the software size small, is as follows:

1. Decompose a function, in a serial manner, so as to make the parts mutually
independent. The software size becomes minimal.

2. Common parts: All parallel data flows are similar to each other and thus not
mutually independent. But, if common parts are found, they may be decomposed to
mutually independent common parts and the calling sequences.

3. Quantitative evaluation and research: In each design decision, choose the minimum
software size (the logically simplest) case. If no good solutions appear immediately,
let it be studied as a research problem.

The size reduction might invite some troubles. If only the software size reduction
is obligated, bad methods that might undermine comprehensibility might be taken. As
most vendors count the software size as a measure of the sale, the size reduction might
appear to them to lead to a drop in sales. It is important to share the same
understanding that it aims at decreasing people’s efforts, just as a muscle works less
when habitually doing more creative work.

3.2 Sequential Logic Part one, an Elementary FSM

3.2.1 Basic Concepts of FSM

In this section, “sequential logic” for an elementary FSM is discussed. After an
introduction, design of a vending machine as an example progresses to an elementary
FSM in a step-by-step manner in the detail of both design and desk checks, and then an
expansion to multi FSM is made.

The well-known ‘traffic right’ case in Figure 6 shows the basic concept. In Figure
6.a, it lights ‘green’, then ‘amber’, and ‘red’ in each interval, and then it returns to
‘green’ to repeat the same cycle. Each of the three states is a stable state, they operate
exclusively forming_a closed cycle, and thus they constitute an elementary FSM,
corresponding to a concept.

132 Z. Koono and H. Chen / The Ultimate Systems Development Method

Table 1. Event (command) structure
a Traffic light State S1

Bt Auxiliary info.
Bet |Ex | |Coinimsated | Anont |

Detailed Tr 20 Ex. 2| Specifyitem | Ttermno. l
{State)
transition Cormmand Al]xl].larylnfo.
route Next State SO Ex1 Lcharg | Armount '
_ _ - — R]\/E&Sdge

Ex2| Hedtitem | Jemm, |

In Figure 6.a, each arrow shows a transition from one state to another state. They
are called ‘“‘(state) tranmsition route”, and is named here Tr The input,

old state new state®

causing a state transition, is called an “‘event”, which is a spike-like signal. A state
transition starts at the arrival of an event, and it runs through to the end, and then the
state terminates.

In this system, when an input program detects an external event, it prepares a
standardized packet, including the event as shown in Table 1. Usually an event (also a
command) is accompanied by some auxiliary information. One example in the vending
machine, an event by the insertion of a coin accompanies the auxiliary information of
“25 cents”.

Figure 6.b* shows a detailed transition route of Tr

using SDL* symbols. A

20°
compressed barrel symbol (State S2) shows the state. A wedge symbol under it shows
an event. In SDL, a route is written in a flowchart manner, and it may include one or
more functions (e.g. processing) and also one or more branches. It is assumed that any
transition route is executed without any stops or delays. During Tr,, the hardware

changes from state S2 to state SO. The event T triggers the transition route Tr,, and

207
performs the functions “switch off red light” and “turn on green light” that are derived
from the old state and the new state. There is a next state definition ‘“next state SO”
before the termination. Note that_functions in a route may be systematically obtained
from the differences of the initial state and the terminating state[15]. They are a

“combinatorial logic” part, and the previously mentioned three states with each
transition route are the “sequential logic” part.

4 SDL comes from CCITT recommendation “Specification and Description Language”. Vaughan’s

paper[13] on Bell Telephone Laboratories’ research model showed to specify the switching sequence using
FSM model. Japanese engineers including Koono confirmed the technique with each companies Laboratory
model. Based on its usefulness, NTT and manufacturers’ group used it for the switching system’s
specification description. Thus, it was standardize CCITT recommendation SDL in 1976[14]. CCITT is an
organization under United Nations for standardization in the field of communications. For system
specification, ISO pushed LOTOS, and CCITT pushed SDL. As SDL has been used by many in the industry,
it evolved to a formal definition with both graphic and textual representation in late 1980’s. It is technology
transferred to UML, which evolved to UML Version 2.

Z. Koono and H. Chen / The Ultimate Systems Development Method 133

3.2.2 Vending Machine[6] Input I Process (Function) P Output O
Let us examine the design [fser} N\ il_—|
procedures of a well-known HBHBH o]
vending machine to fix an g o ? ([]]

elementary FSM. Figure 7.2 o —
shows the simple outline view, Cesan e [Q Bold Tten]
on an IPO (Input Process and a
Output) form. IPO form [16] is X Vending machine

best suited to write data flows.

It shows the external inputs in b (e mnn] [EmsmEs] [Eeammn]

I (Input) column and external ":E "—= =

outputs in O (Output) column. 5.0 h[—,

Instead of processing in the st 'Er_“—!omydwomd

center, the outline view 1S g2 } N T Ty

wiitten in P (Processing) S -
column in Figure 7. coin coin item
It must be written to meet Figure 7. Vending machine

the following requirements.

1. All of both input devices that generate events, and, all output devices that are
actuated by commands, must be shown by the outline view. Others that relate to
the hardware status controlled by software must be shown.

2. Systems engineers _should examine both the outline view with and the related
hardware documents so as to be able to remember the hardware parts. This is to
be a key to remind the reader of all the related hardware.

The next problem, fixing the top most FSM, is due to the fact that there are various

viewpoints among software people. As it defines the overall system,

* The focus should be on the system itself

* To show the most abstracted behavior of the system,
which “money is inserted to it, and it outputs the specified item”,

* With each state defining respective hardware resources’ states,
by the name “Vending machine (system) X”, which

* Corresponds to the concept of the FSM.

There are two viewpoints. One is of the vending machine itself and another is the
item to be sold. As it denotes the whole system, the vending machine is better. (In some
cases such as a belt conveyor case, both the system and the item being transferred are
needed.)

In fixing states of an FSM, it should be remembered that these three states are the
top most hardware and software interface. Notice what is remarkable and characteristic.
Figure 7.b shows a viewpoint defining the three states, with a time chart. The small
figures shows what the designer noticed. At first, it is the initial state. The next state is
a state when “deposit total” is displayed. The last state is a state when one or more
“salable” item is displayed. These three states are stable, exclusive of with each other,
and they form a closed cycle.

As this is a simple and education system, some symbolic figures are also shown.
Strictly speaking, a “state definition diagram” should be written for defining the
hardware state for each state if needed. All resources relating to each state are listed up
first, and each state definition diagram must include each state of all the resources.
Note that, when the initial and the terminating states are defined, the state transition

134 Z. Koono and H. Chen / The Ultimate Systems Development Method

route program must perform to realize the differences[15]. If they may be simplified, it
is preferable to use some symbolic graphic representation. Note that even if it is simple,
it is not a comic but an official specification of hardware and software.

The next is to define all the inputs. Examine if FSM'’s nhame (concept), the states and
the events conform to each other. An event (or a command to hardware) is transmitted
in a standardized format shown in Table 1. Auxiliary information is sometimes the
mainstream data in the “combinatorial” logic part.

These specifications define events (commands), as official contract or agreement
documents, and never a dictionary. Catalogue figure/diagram shows an overview of the
structure preferably graphically (e.g. Table 1), and there are hierarchical tables for
defining each event (command or data) and each piece of auxiliary information. The
definition starts from a definition of a data name, and goes down to lower level fields in
a hierarchical manner. As many people refer to these, each description must be accurate,
strict, clear and short. It should be written as if it is an article of a law’. The description
also includes the data length, data type, initial value and so on, as well as the occupying
data space area.

After a specification is delivered to the software group, the aforementioned
information and all the symbolic names are written next to the natural language name
in a parenthesis. Outside of the software group, as all peoples speak natural language,
the use of symbolic code names is inhibited.

3.2.3 State Transition Route

Input 1 Process (Function) P Output O

State memory

S0 S1 S2 | 83
EvO0 ‘
Evl '

vent Ev2 j
Ev3 Ev3-p---1 — -~ - IRS2Ev

Figure 8. Transition route with decision Figure 9. State-event matrix

Abnormal
route

The next first stage is to draw a simple state transition diagram as shown in Figure 8 [6],
referring to the state event matrix in Figure 9 [6]. The state event matrix is a two-
dimension table listing all states and events. At a cross-point of state (e.g. S2) and

event (e.g. Ev3), a transition route name is recorded. A name here is as (e.g. Trg,py)-

The purpose of writing a simple transition route diagram is to focus attention on the
transition routes only. In practice, write the event name near the origin, and also, for
simplicity, write each transition route name along each route as they are deleted.

*In order to keep every group’s quality level high, it is recommended to charge the loss resulting in the
following processes to the group that made an error. The judge should be made based on related documents’
descriptions. Each group is assigned the budget for the loss, and managements review each group’s
percentage of the total/budget. All groups are obliged to decrease their own works as well as what resulted in
related groups. Historically, hardware groups had been improved through these strict rules and the successive
improvement activities. The same approach should be taken also in software.

7. Koono and H. Chen / The Ultimate Systems Development Method 135

First, look at the outline view in Figure 7, and notice on the hardware input in
column I to find an event. Referring to the event specification, and with the state
pointing to the state event matrix, name the transition route name and write it in the
cross-point of the state event matrix, and draw the simple route without any functions
as shown in Figure 8.

A transition route might terminate the plural termination states. In such a case, a
branch is inserted. An event without any function is written as a circle, starting from a
state and retuning to it. When all cross-points of the state event matrix are filled, is the
end. If each transition route is provided, the system endeavors to work on any
operations that are applied.

Figure 9 also shows a principle of an event driven OS. The OS has each state
memory (now S2), corresponding to each FSM. Now, an event (Ev3) arrives. Using the
state event matrix, the transition route R, . is found, and the OS executes a program

for R, ., as shown below. As it includes the next state definition before the end, the OS

updates the state in the state memory before it terminates. It is very simple and it can
directly execute the transition route program, from specification level to the final
program.

In this method, neither interruptions nor delays should be included in a transition
route for preventing possible errors. If needed, an additional internal state may be
provided for the pause,
and provide an event or
the equivalent for
resuming the operation.
For timing, a timer
process should be
provided and the timing
information is sent to this.
After the timing has
passed, it sends back the
time-out event.

The second stage is to
insert all the outputs on
each transition route as
shown on Figure 10.
Differences of states
create necessary
hardware command(s). A
command is essentially
one way except for
immediate response (e.g.
as in-operable,
OK/NOK), and executed
in a very short time.

Keep the completed
simple transition diagram

N “Abnormal as shown in Figure 8,
route make a copy for this
Figure 10. Output inserted transition diagram second stage. Do not

Input I Process (Function) P Output O

136 Z. Koono and H. Chen / The Ultimate Systems Development Method

rewrite for preventing errors, but instead enlarge and re-use the copied diagram. On this
copy, all the outputs should be inserted. The resultant diagram of the second stage must
be written strictly in ONE A4 sheet size. (If it is written in multiple pages, the error rate
surely increases. As a person errs unknowingly, one thing to do is to take various
countermeasures so as not to invite errors.)

A design is a detailing from an input document to the output document (or from a
part of a document to the detailed part). Both documents of the input and the output
must be left, and show the change clearly. Errors arise during this design between
documents. The next desk check is to check strictly and rigorously what was made in
the preceding design[17,18]. If some relates to hardware, do not stay within the
systems but go one step inside of the hardware to examine the related parts (e.g.
hardware sensors and their characteristics.)

In Figure 10[6], outputs in picket symbols are inserted along each transition route
of the original simple transition diagram. This principle has been already explained
using the example of the traffic light in Figure 6.b.

1. Prepare diagrams showing each hardware state.

2. Do the following procedure for all transition routes, keeping the diagram to be one
A4 sheet.

3. Pick up a transition route. Based on both hardware state diagrams, differences of
hardware states are listed, the necessary output commands derived, and each one
insert into the transition route. The result is as shown in Figure 10. Do strict checks,
and keep the detailed and make a copy for the next stage use.

If the commands are too many on any route, provide another program function for
sending them out, and the transition route just calls the program function. This is made
for keeping the diagram simple and able to be able to be understood at a glance. After
the insertion of all the outputs, the desk check is to confirm that all the transition routes
complete all the (hardware) states.

3.2.4 Completing Design of a FSM

Selectable item disp.

Deposit disp.
slaf7ls

Money
stocker

structure
Control
structure

Figure 11. Data flow of a vending machine

The last works for completing the design of an FSM is listed below.
1. Insertion of necessary functions (including next state definition).

7. Koono and H. Chen / The Ultimate Systems Development Method 137

After inserting the output hardware drive requirements, the requirements for internal
data processing must be designed and the necessary functions inserted. The functions
inserted are super-scribed on each state transition route in the previous Figure 10. As
a human cannot think outside of +/- around 10 boxes of the object being considered,
use hierarchical functions to decrease the number of functions on each route, and
keep the entire simple diagram always on one A4 sheet. Do similar strict checks as
before, considering hierarchical structures.

The design of a system level data flow best clarifies the internal processing
requirements. The upper part of Figure 11, named data structure, shows a data flow of
the vending machine, from the primary input on the left side, to “deposit total”, to
“selectable item list”, and to the final output on the right. The lower part of Figure 11 is
named control structure of the vending machine. The both-way arrows show some
transition programs calls of those functions (e.g. “Add” and “Show selectable”) in the
data structure.

In some applications (e.g. digital camera), the data structure constitutes majority
of the software. The systems engineer (chief designer) calls an expert camera product
planner and software group people, responsible for this work, and draws a hierarchical
data flow of the camera. After thus decomposing the various sections, the relations
between the various features of the camera, internal functions (data flows) and major
FSM’s become clear. The architecture is settled, and data specifications are prepared.
During these, cares should be taken to minimize the size. The greater part of the control
structure is implemented by FSM’s designed by systems people.

2. Move the completed state transition diagram to diagrams on SDL CASE tool. It
should be accomplished by just copying, and then careful and strict checks should be
made. Figure 12[6] shows a state transition diagram of SO for the vending machine
concerned. Arrange and write the diagram uniformly, clearly, well balanced and
beautifully on the sheet. Those who can do these well will be a good systems
engineers. A completed SDL chart may be said to be an article of the constitution.

Input 1 Process (Function) P Output O
Idie SO ©
[hd |
2y | Moy 1 | L’—Jcm"gc 2 Figure 12. State
[Nsmeso_] transition
diagram in SDL
Amount | Total ———— Deposit R
- | deposit / total eXpression
Deposit A’ mone:! /
totat
l_j T 74
item list | Listup
2 satabke i Saleble
items jtem I
= /
No OK
Salable item
listdisplay
N state SO
®

®

In Figure 12, the SDL diagrams are in P column of the TPO. As is seen, when data
in both I and O columns are written, and each data flow is shown, the operation of a
transition route may be easily understood. It is suitable for the education of former

138 Z. Koono and H. Chen / The Ultimate Systems Development Method

hardware people and also for machine design and checking by the design automation.
As the target (e.g. around 3 state FSM) is standardized, the design and check
procedures may be similarly standardized. By gradually introducing each automatic
operation, the design automation system increases the degree of the automatic
operation.
3. Define each transition route function corresponding to each transition route,
starting from an event and ending at each following state definition.
4. The hierarchical and structured design may be made in natural language using a
Structured chart CASE tool®, preferably with a data flow CASE tool.
5. Fix all program specification for all the functions after enough desk checks.
6. Experimental simulation run of the system, using thus defined skeleton functions
with stabs. It is made in order to prove the quality of systems engineers’ works.

3.3 Sequential Logic part 2, Multiple FSM’s

This method claims to organize a system by a hierarchy of mutually independent
FSM’s of around three states. Figure 13[6] shows the example of a vending machine
organized in this manner. In human brain, Figure 13 is projected like Figure 3.

Figure 13. Vending machine with hierarchical FSM group

If the reader examines the figure, each FSM may be designed around three states,
and as the level goes down, each level performs at quite different concept level.
Furthermore in cach level, most flows are partitioned in a serial manner to make each
FSM independent, and thus the software size will be greatly decreased, as planned.
Therefore, anyone may develop such a system easily.

® A structured chart is a chart fitted to show a program and to convert to source code in the final stage.
Therefore, it enables a small step of hierarchical detailing and a designer can check during a design easily. It
is a strategic weapon that makes Japanese high quality software. PAD (Program Analysis Diagram)
(Japanese version URL: http://www.hitachi-system.co.jp/topital) and HCP (Hierarchical ComPact Chart)
(Japanese version ~ URL: http://www.denso-create jp/service/products/nnheadway/index.html and
http://www.oki.com/jp/Home/JIS/New/OKI-News/1996/11/29646.html) are two major streams.

Z. Koono and H. Chen / The Ultimate Systems Development Method 139

Let us examine the design, starting from the top level of Figure 13. The top level
concept “vending machine” is decomposed to “cash handling”, “ Selling mechanism”
and “Eject item”, as is in a typical Myers’ STS decomposition, and they constitute
mutually independent FSM’s.

Automaton theory says that, if the input side FSM has x states, the internal FSM has
y states and the output side FSM has z states, the system may have x-y-z states. [f x =y
=z = 10, and thus x-y-z = 1000. As the cost is proportional to the number of states, the
three FSM case is 30 states, while the entire system is 1000 states, and thus the ratio is
33: 1. Although this is a hypothetical comparison, the substantial reduction of the size
is understandable.

In the next level, “Cash handling” is decomposed to “Paper money handling” and
“Coin handling”, by the hierarchical decompositions of both the input “Money” to
“Coin” and “Paper money”, similarly to “Time” to “Hour” and “Minute” in the fourth
level of data flows in Figure 3. In the next level, the flow is almost data flow, and STS
division divides the flow in a serial manner, resulting in mutually independent FSM’s.
Therefore, the situation is quite the same as that of Figure 3.

Next, let us examine the case of “Cash” to “Coin” and “Paper money”. There are
many similar concept groups.

« Cash card, credit card, electronic money, points and token....

« Japanese Yen, Korean Won, Chinese Yuan, American dollar, and so on.

The same situation arises also in “Selling mechanism” and “Eject item”. If these
expansions were assumed from the start, the modification might be minimized.
Therefore, no more explanations will be needed. In hardware, this approach will be
known as a strategic business plan based on standardization.

Software productivity had been a hot research topic. Research is the prerequisite.
Based on strategic research[19,20], a unified system for PBX (Private Branch
eXchange) has been developed for both domestic and export uses[21]. It evolved to
Central Office systems for telephone companies[22]. Firstly it was a small system,
where one MPU controlled all, and then it evolved to a medium system, where another
MPU was dedicated for internal processing. The single architecture enabled full
product lines of products. Such wide usability exceeds the normal productivity increase.
With the molecular level flexibility, this architecture is very useful.

3.4 Midas OS
TR SN =~
L 3
I L \\ l‘ FSM Process 1 2
: | v ||| &=
Stale memory: §2 [Provess: Px A
High i Trans. rout
o SERERE 83 TRy,
Input priority vl 52
programs queue 3v0 Rl Ry paf RS20 R 210
{} Evl Ry Ry 2y
T R '
a ‘in /N B2 MRy
Low Hard
¢

Standard packet priority

PRy
gueue Il

Figure 14. Midas OS

output

140 Z. Koono and H. Chen / The Ultimate Systems Development Method

One of the authors Koono developed an event driven type OS[23,24] for highly
developed multiple FSM environment in 1975. As it brings many merits to users, it was
named “Midas” following the name of a Greek god Midas, who changes everything he
touches into to gold. The main function is to control FSM’s. It may be an independent
OS or it may work under some existing OS. The following is the main structure.

In the right side in Figure 14[23], there are state transition programs for various
FSM’s. On the leftmost side, there is an input program for detecting an event. The
output is standardized to be a packet shown on the bottom left. (A program should be
designed so as to give the best-suited form to the following stage.) It has both
designated address and sender address (e.g. FSM, program or hardware device etc) like
an envelope, with event (command) and related auxiliary information like a letter.

It has at least two level queues of high priority and low priority. The event packet
from the input program is always attached to the low priority queue, while all
(message) packets for inter FSM communication, are attached to the high priority
queue. This prevents confusion of processing by multiple events. By virtue of the
standardized packet, they share one large common idle queue of a large size. This
simplifies the work of determining the idle queue length.

When the processor is idle, it scans the high priority queue, and if nothing is found
anymore, then it scans the low priority queue. If a packet is found during the scan, the
OS detaches it from the queue and decodes its designated address as shown at the top
right of the figure, to reach the designated FSM. There, the present state of the FSM is
obtained from respective state memory. Event is extracted from the packet, and from
the cross-point of state event matrix, a transition route program corresponding to the
state and the event is obtained, and the program is executed as shown in the right most
SDL diagram. If an output (shown by a white picket) exists, it is sent out (directly or
through some queue). At the end of each transition route, the next state number
definition (in the figure NTNX) sets the state memory of that FSM.

When all packets in the high priority queue are exhausted, the scanning of the low
priority queue is made, and thus found new packet (including a new event) begins to be
processed. The functions described up to here must be implemented to work speedily.

An endless ring memory is provided, and every packet of processed and related
information is recorded. Once the system stops, the ring memory restores the traces of
transition programs for some time. Thus, most of both hardware and software failures
soon become clear. For these purposes, state transitions are not allowed to interrupt or
delay the process, and all data and information transmission between FSM’s are
conveyed through event (command) packet upon the request.

The timer FSM is provided to return the “time-out” event to the client FSM upon
the request. For a much faster response need, another operation unit may be provided
to work at an interrupt level.

For fast real time applications, the length of the queue must be short. For high
reliability systems, full or part of dual/duplex system is possible. As this part is a core
system of any operating system has, any combination is possible. By integrating this to
an existing operating system, it widens the capability of a full event driven OS. Those
simple, systematic, but strict rules enable simple, speedy, transparent, reliable and easy
to evaluate (e.g. processing power, various delays and abnormal behaviors) systems.
Although these might be seen tight constraints for software people, they are willingly
accepted them, saying that “I now understood the control structure of the system”.

Z. Koono and H. Chen / The Ultimate Systems Development Method 141
4. Application Results

As an application of this method, the authors’ training’ of around 100 teams (around
500 students) for more than 10 years in Saitama University is reported [6]. It was a
one-month seminar “development of a

vending machine”, in their “software Table 2. Quality reports (1995)

engineering” lesson for 3rd year students. The Summary of quglity report (1995)
process was exactly the same as reported here.

The 3rd year students were in the maturing ~ |T¢amS/w {No. of defects found Defect
stage from the preliminary education to be a |— ;:f 12 5 Tg QlA lm‘;n‘;';y
software people. But their programming - —
ability is still low and most of them built-in |[B [438 4] 4 | [205
around 100 errors/kilo-lines. The work-hours |c |486 3 0 2 | 100
of a team were around ISO. hours on average. R ol v o
Around the 70% of the time was used for
design, and the remaining 30% was used for |E |858 3 0 |7 117
tests, which is a result of their low residual |g 495 i 7 12 |200
defect intensities after desk checks. From their
reports, two points, the software size and the G |44 4 ! L} 136
quality, are shown. H |463 31 O 0| 65

Table 2 [6] summarized performances of * For Parking tickets an.d outgoing control

each team in the year 1995. In them, team E g Test for each function T2: FSM
. R . and QA: System test including running

developed two systems (parking ticket selling pefecy intensity is for Kilo lines
and payment and gate control). Others used 3
FSM’s. In the left side columns, their average
software size/team was 487 lines of C code.
Therefore around 150 lines of C code per
FSM is the standard during the ten years. As
students add various codes in programs, the
net number was around 100 lines.

More detailed study was made on the team’ 1— R NN ARALL
software size, where the leader instructed 1 3 10 - 30
team members not to write extra codes. Figure Number of lines of a route (without comments)
15 [6] shows the distribution of the number of
lines of C code of transition route programs.
The horizontal axis shows the number of lines

Figure 15. Route length distribution

" In the Department of Information and Computer Sciences, Saitama University, third year students learn core
lessons of C language, operating system and software engineering, after preliminary program education for
two years. The authors educated students in the general way of developing an embedded system, then the
principle of FSM, an event driven Midas OS and the vending machine of three states FSM with the program.
A student team consists of 4 to 7 students. Teachers appointed each team leader, considering leadership and
programming skills, then an OS (Midas OS) specialist by programming skills, and others were shuffled as to
all teams have a similar capability. The assignment was to develop a vending machine-like system using
plural FSM’s in a month, aiming at a top sales product. In order to arrange each team (from 4 to 7 students)
have a similar capability, teachers appointed each team leader, considering leadership and programming
skills, an OS (Midas OS) specialist by programming skills, and others were shuffled. Role-playing was
applied. They were educated that a leader was a president of a company to guide and lead team members, and
other members had to contribute to their own team’s success. After the development, there is an open
presentation, where a president made a general report and others reported each work. The education had been
made from 1991 to 2001 at full scale and continued for the next 5 years in a reduced scale.

142 Z. Koono and H. Chen / The Ultimate Systems Development Method

of each route, and the vertical axis shows the appearance frequency, on both
logarithmic scales, and the plot is for a program. The program size ranges from 5 to 40
lines. Therefore, highly frequent routes of the OS must be designed to be “speed first”.
Due to this simplicity, program level errors may be much decreased. This case had no
extra parts for data structure. When using hierarchical structure in a program, it is
important to repeat natural language expansions as far as possible, and each program is
small enough as shown in Figure 15.

Plots show a belt like zone®. A doted bold trend line threads the plots group and two
fine sub-trend lines are drawn, which are in parallel to the centerline and equal distance
apart. The trend lines show that the number of line of each route shows a negative
exponential distribution® and the upper is 2.18 times larger and the lower is 1/2.18
times smaller than the center trend line. From these, each transition route shows such a
variation. Other details were in the footnote 8 and 9.

The next is quality. In table 1, the testing were T1: unit test for all C function’s, T2:
FSM test, T3: integration of FSM’s and system test, and each number is the number of
defects. The rightmost column is for the averaged defect intensity. The number of
defects found at each stage is recorded in the table. In the year 1995, an additional strict
test was made as “Quality Assurance”. It ranged from document check to machine test,
as a professional QA does. The total average defect intensity is 12.8 defects/kilo-lines.

Figure 16 [6] shows another year’s record. The horizontal axis shows the defect
intensity found during testing. The average defect intensity comes to around 12
defects/kilo-lines. As these two show, the average was constant due to the constraints
of procedures. As a student’s average defect build-in rate is 100 defect/kilo lines, they
usually checked out a considerable percentage
in machine test. Through the process, more
than 80% of defects had been checked-out
unknowingly. Thus, the high quality strongly
impressed the students. In reports, they wrote
“Oh! It worked just integrated!” Productivity

Figure 16 shows the relation between the &;ﬁém
quality and the productivity for another year.

The vertical axis shows the productivity, and
each plot represents a team. The following r
facts caused the small variations of the plots: 1.

v

0 n L n e

The target is all the similar three states FSM, 2. 0 10 20
The process has been strictly constrained, and Defect intensity

(Defect/ Kilo line)
3. The team member students are arranged so

as to be around the same ability. In an actual Figure 16. Quality and productivity
field data, such a clear trend would not appear.

The trend line of Figure 16 shows that, if
the defect intensity is low, the productivity is high. Both the quality and the
productivity is a result of a team’s mental ability, it flows naturally. 4 poor quality
software organization is also_a poor software productivity organization. When the
effective process is improved, both quality and productivity are improved.

8Statistics says that a lognormal distribution appears when it is thought of as the multiplicative product of
many small independent factors. In it, 99.74% of plots are in a range from x1/3 to x3 times of the standard
deviation, centering at the mean.

? Traffic theory says that the occurrence is random and small; the holding time (the length of a route) shows a
negative exponential distribution.

Z. Koono and H. Chen / The Ultimate Systems Development Method 143

5. Discussions

The authors reported details of the “product” and “process” as well as “characteristics”
focusing systems engineers’ standpoint. As the software size has been reduced to a
minimum, a systems engineer will be free from loads of programs, and can use own
time and energy on what the systems design requires. There are many research papers,
surveys, investigations, various comparisons, discussions, various trade-offs on this
work, as well as the necessary preparations. The accumulation reflects in the works.

Due to the molecular simplicity and rich documents following the strict
standardizations, a thus developed FSM or a hierarchical FSM system may become
commercial parts. Wide use of this software will undoubtedly change the industry.

The situation is the same also for software group people following the systems
group. They need not to worry about “waste”, “‘strain” and “imbalance” anymore, and
are encouraged to develop “rational, quantitative and scientific software engineering”
as reported in SOMETO07[18]. Thus they join the world of qualified engineers. The
software group is not only to responsible for the production, cost, quality and dellvery
of each system, but also for improving the management indices by automatic design'®
as shown in SOMEOO06[9] for both software groups and also systems groups through
evolving the design system. The design process, descrlbed here, is standardized in
various aspects, and consideration is taken of the automation''

The target is to emergence from labor-intensive to knowledge—intensive work.

An embedded system is a kind of hardware. In a development of a computer, vast
machine-hours are used to confirm the correct operation. As an embedded system is
one of hardware, it should be computer-tested similarly for all possible cases. It may be
impossible in usual systems, but in this architecture, as the possible number of the
combinations is much reduced, it will be possible.

Another strategic way is to use “Highly Accelerated and Yield Software Testing
(HAYST) [25]”. The principle is like “experiment.planning”; in which “simple lattice”
is used for preparing cases of experiments. In this testing, “simple lattice” is used for
preparing each test case. The usual testing saturates following to the negative
exponential way. This method, however, will show a linear growth until its prepared
end. Therefore it will be very useful in system phase testing.

The design method mentioned here, is also applicable to Object Oriented Design
(OOD), the authors believe[26]. Presently OOD is becoming popular. Although OOD
includes various capabilities, the key factor is to access the target item. It means that a
software designer understand the behavior involved, and then realizes it as a FSM
model. As most people have not been familiar with the concept, there are numerous

" The new software productivity from thel970's to 1980 was estimated to be from 0.5 to 2 lines/Work-
hour[27]. That of early 2000 in Japan is estimated around 10 lines/Work-hour[28]. The growth for 30 years
may be around 10 times. This figure is wonderfully small. That of hardware logic design would be around
10", which are achieved by high-level definition language (like C language) and hierarchical design tools by
reusing decomposition patterns (like a CASE tool). Such heavy delay of software compared with hardware
seems to be caused by the lack of competition and the non-quantitative approaches. The specialty of software
is a repetitive decomposition of human concept as expressed in (mainly) natural language. As the authors’
study [9] achieved a break through on this point, it is important that enough energy is poured into this work.
'"For design automation, it is important to study the works. In the design of a system, the main document
changes several times and finally it reached to a set of SDL chart and others. As is shown by this, around 100
times "write and erase" are needed until the main document is complete. After the completion, however, the
frequency of the reference is much low. Therefore, if a CASE tool is designed without consideration of such
work characteristics, it will be a failure product. Cut the price of a CASE tool to 1/20 of the present, and sell
1000 times more. If a CASE tool were acknowledged in this manner, more sales would be possible.

144 Z. Koono and H. Chen / The Ultimate Systems Development Method

variations. But, if the essence is taken, such varieties are unnecessary and a simple
hierarchical FSM architecture is enough.

This requires the evolution of Operating systems. As an FSM is natural for
understanding an item, similarly it is natural that every Operating System offer full
event driven as an extension of the old fashioned simple start-stop. What should be
done is very simple and it will absorb all current systems in a part of the new system.

The world of software had been too conservative. Now, this world will change
from being labor-intensive to creating and accumulating knowledge in preparation to
the coming world of knowledge.

6. Conclusion

This paper reported an ultimate development method for embedded systems.

1. As an embedded system has been an extension of hardware, the software is
different from so-called IT software.

2. The software may be constructed by a hierarchical FSM. The background, both
“product and process” and an event driven Operating System as well as the
development results have been discussed, putting emphasis on process using
graphical means.

3. As the design process consists of an elementary FSM of around three states and the
hierarchical structure of such FSM’s, these two are each simplest cases. Thus, the
process may be said to be the ultimate one.

4. Although this started from an embedded system development, it may be used also
for OOD, and both the program design and the system design discussed here, may
be automatically designed in the future. Also from this viewpoint, this is ultimate
design for these.

The next stage is how to realize these on a large scale in the industry and have the
people involved enjoy the merits.

Acknowledgements

One of the authors Koono expresses his deep thanks to management and employees
of Hitachi, Ltd. for giving him and opportunities for continuing
research/development/feedback. The authors express their gratitude to students of
Information and Computer Sciences, Saitama University, who studied “Design of
Embedded Systems” together. They are thankful also to members of Software
Creation Project for various studies included here. They are thankful also to Mr.
Daniel Horgan for his careful checks and elaborate collections of their English.

References

[1] Z.Koono, H. Chen, H. and B.H. Far: Software Systems for Embedded System Business, IPSJ technical
report, SIG SE 139-4, 2002.10. (in Japanese)

[2] Z. Koono: Processor Systems in High Integration Age, Joint Conference of Four Electrical Institutes
1979, No. 27-3, 1979. (in Japanese)

Z. Koono and H. Chen / The Ultimate Systems Development Method 145

[3] A.E.Joel: Bell System Features and Services, International Switching Symposium ‘79, 1979.

[4] Z. Koono, T. Kondo, M. Igari and M. Soga: Structural Way of Thinking as Applied to Good Design
(Part 1. Software size), [EEE COMSOC Global Telecommunications Conference 1991, pp.24.3.1-8,
1991.

[5] Z. Koono, H. Chen and H. Abolhassani: An Introduction to the Quantitative, Rational and Scientific
Process of Software Development (Part 1), Software Methodologies, Tools and Techniques 2007,
pp.361-371, H. Fujita and D. Pisanelli (Eds) New Trends in Software Methodologies, Tools and
techniques, 1OS Press, 2007.

[6] Z. Koono, H. Chen, H. Takano and S. Morimoto: Ten Years Education of Embedded System
Developments by Student Teams, 26th Software Quality Symposium pp. 171-174, JUSE, 2007. 9. (in
Japanese)

[7]1 Z. Koono, H. Chen and B.H. Far: Expert’s Knowledge Structure Explains Software Engineering, Joint
Conference on Knowledge-Based Software Engineering (1996), 193-197.

[8] H. Chen, B.H. Far and Z. Koono: A Systematic Construction Method of an Expert System Used for
Automatic Software Design, Journal of Japan Society of Artificial Intelligence, Vol. 12, No. 4, pp.616-
626, July, 1997.

[9] Z. Koono, H. Chen and H. Abolhassani: A New Way of Automatic Design of Software (Simulating
Human Intentional Activity), New Trends in Software Methodologies, Tools and Technigues, Fujita, H.
and Mejiri, M., (eds.), p. 361-371, I0S press, 2006.

[10] Z. Koono, K. Ashihara and M. Soga: Structural Way of Thinking as Applied to Development,
IEEE/IEICE Global Telecommunications Conf. (1987), 26. 6. 1-6.

[11] Z. Koono and H. Chen: Structure of human Design Knowledge and The Quantitative Evaluation (Part
1/2), Technical Report of IEICE KBSE2003-57, pp. 67-72, 2004. (in Japanese)

[12] G.J. Myers: Reliable Software Through Composite Design, Petrocelli/Charter 1975.

[13] H. E. Vaughan: Research Model for Time-Separation Integrated Communication, B. S. 7. J. Vol. 138, pp.
909-932, July 1959.

[14] CCITT: Specification and Description Language (SDL), Recommendation Z.100. (1976).

[15] Z. Koono and B.H. Far: High Quality Design Using SDL Technology, SDL Forum ‘95 with MSC in
CASE, Braek, S. and Sarma, A., (eds.), p. 139-150, Elrsvier Science 1995.

[16] IBM: HIPO-Design Aids and Documentation Technique, CG20-1851-1, IBM 1975.

[17] Z. Koono, H. Chen and H. Abolhassani: An Introduction to the Quantitative, Rational and Scientific
Process of Software Development (Part 1), Software Methodologies, Tools and Techniques 2007,
pp.361-371, H. Fuyjita and D. Pisanelli (Eds) New Trends in Software Methodologies, Tools and
techniques, 10S Press, 2007.

[18] Z. Koono, H. Chen and H. Abolhassani: An Introduction to the Quantitative, Rational and Scientific
Process of Software Development (Part 2), Software Methodologies, Tools and Techniques 2007,
pp.372-390, H. Fujita and D. Pisanelli (Eds) New Trends in Software Methodologies, Tools and
techniques, 10S Press, 2007.

[19] K. Hiyama, N. Mizuhara, K. Mochizuki and Z. Koono: A software system for electronic switching
system using distributed state transition method, JEEE COMSOC ICC'82, pp. 5G.3.1-5, 1982.

[20] K. Hiyama and Z. Koono: Uniform software construct for digital switching system, Hitachi Review, Vol.
31. No. 5., pp. 263-268, Oct. 1982.

[21] K. Mizuno M. Kusama, M.W. Medin and W.C. Garraty: DX series of wide application digital
communication controller, Hitachi Review, Vol. 31. No. 5., pp. 275-280, Oct. 1982.

[22] T. Ohtsubo and T. Aizawa: Fully-digital switching system HDX-10, Hitachi Review, Vol. 31. No. 5., pp.
269-274, Oct. 1982.

[23] Z. Koono, T. Kimura, M. Iwamoto and M. Soga: A Stored Program Controlled Environmental Function
Tester Based on FMM/SDL Design, International Switching Symposium 1987, pp. B. 9. 5. 1-7, 1987.
[24] Z. Koono, S. Matsumoto, R. Ozaki, M. Soga and K. Ozaki K: An Environmental Simulation Tester as
Applied to Traffic Characteristics Evaluation, Proc. of The Twelfth International Tele-traffic Congress,

pp. 1284-1290, 1988.

[25] M. Yoshizawa, K. Akiyama and T. Sengoku: An introduction to Highly Accelerated and Yield Software
Testing, 2007, JUSE Press. (in Japanese)

[26] T. Wang and Z. Koono: Using Extended Finite State Machine Model for Object Oriented Design,
Technical report of IPSJ, SE-107-16, pp. 121-128, 1996. (in Japanese)

[27] B.W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

[28] Software Engineering Center: White Paper of Software Development Data, Software Engineering
Center IPA 2005, 2006, 2007.

