38 New Trends in Software Methodologies, Tools and Techniques
H. Fujita and T. Gavrilova (Eds.)

10S Press, 2011

© 2011 The authors and 10S Press. All rights reserved.

doi:10.3233/978-1-60750-831-1-38

Principle of Documents for Systems
Design
Part 1: Non-sequential Case

Zenya KOONO*' and Hui CHEN®
“Creation Project
®Information Science Center, Kokushikan University

Abstract. This paper discusses the principles of documents for the systems design
of a software system without a sequential nature. It reports firstly on the design
aspect from “Human intentional activity”, and secondly the documentary aspect
for human interception. Emphasis is put on diagrams, charts and tables, in
essentially the same situation as a hardware.

Keywords. Systems engineering, design, document, human intentional activity.

Introduction

This paper discusses the principle of design documents in the Systems Engineering
(SE) phase of a software development, where the input to output relationship of the
system is fixed (Non-sequential case). In Software Engineering, the principles of
documents have not yet been clarified. Surely documents are for conveying
information, but as both sender and receiver are human, human nature must also be
considered. This paper intends to clarify the foundation from the two viewpoints of
human intentional activity and synergy by drawings and text. The authors focus on the
SE phase, which is the early phase of a development, where both hardware and
software are equally treated; and documentation must be on an equal level both for
software and hardware.

Section 1 discusses the design, which is based on human top down nature, named
“Human intentional activity[1]”, and applicable irrespective of software or hardware. It
constitutes a “process”, and is essentially the same as a physical work process, a
hardware design process and a top management process. For an actual work, the
process must be stabilized enough and error must be few. Documents are tools for
attaining these objectives, and thus the requirements of documentation are fixed.

Section 2 discusses the documents. From the readers’ viewpoint, an important
synergy[2] has been found, which arises when both text and figure/drawing are used
for an object. Based on this aspect, an appropriate combination of drawing and text is
the pattern of a document. As a result, Data flow (diagram), Data chain (diagram) with
Data specification table and finally control flow are seen as important elements in
constituting design documents.

! Corresponding Author: Representative, Creation Project. Honfujisawa 2-13-5, Fujisawa, 251-0875,
Kanagawa, Japan; E-mail: koono@vesta.ocn.ne.jp, URL: http://www.creationproj.org

Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

1. Principle of design

1.1 Structured design and an extension to ESD

A design method effects not only the
productivity and quality but also the future
extension of a system. As a beginning for
this paper, a design method is discussed.
Studies of design methodology started
after the 1968 NATO Conference, where the
introduction of Engineering was urged.
From the first stage “Stepwise detailing” to
recent “Object Oriented Design”, various
methodologies have appeared. However, due
to the lack of quantitative evaluations, the

Ir |
Obtain Obtain .
time hands Display
I 1
Obtain hr. Obtain Obtain sec.
hand min. hand | fhand
]
- | l
Obtain Obtain Obtain
deg. width length

39

comparison has not become clear yet.

A survey[3] from JUAS (Japan Users

Figure 1. Structured design of “clock”

Association of Information Systems) reported that around 1/3 is “Structured Design”,
1/3 is “DOA (Data Oriented Approach)” and 1/3 is “Object Oriented Design”.
“Structured Design” is to organize the target into a hierarchical function system as
shown in Figure 1. Many programmers complain of difficulties in decomposing a
system hierarchically to form a functional hierarchy. As most of the designers have
been trained mainly for programming, their cry is quite natural. Also DOA takes a
hierarchical function system by using data flow, and may be regarded essentially as a
Structured Design. Thus the problem is how to support the data aspect in design.

The authors have reported[4] a method to make hierarchical design easier.
Hereafter it is called an Extended Structured Design and is abbreviated as ESD. As the

details have been reported
elsewhere, the explanation can
be kept to a minimum.

Figure 2[4, 5] shows an
example. At the top level, a
function “Clock” is a
specification to be designed. In
ESD, an output data “Clock
face” is added, and an input
data “Real time clock” is
chosen for obtaining enough
information for “Clock face”.
Thus an elementary data flow
was formed to be a parent
concept, which is used for the

following hierarchical detailing.

By adding both input and
output data, the central
function becomes clearer, and
also the following detailing
becomes easier. Both ESD and

Realtime

clock Clock
L
1Sec -
clock] 10 - rime p2] Obtain handg
Obtainhr |
Tl Hr hand |
! Mi A Obtain min
€
Se
—
Obtain angle
of min hand
l& I (Angle = 6*Min
M Obtain width
of min hand
g Obtain length o

min hand

Figure 2. Extended Structured Design

40 Z Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

IBM’s HIPO[6]° use an elementary data flow as a parent, and repeats the hierarchical
decomposition using data flow. ESD demands that an elementary data flow be mono
conceptual, and words or phrases for input, function and output must match the concept,
while HIPO is looser to allow even more complex concepts.

An elementary data flow “Clock” in the second-level is hierarchically detailed to a
detailed data flow in the third level. It consists of three elementary data flows in a serial
manner, “Obtain time”, “Obtain hands” and “Display”, which are three children
concepts from the parent concept “Clock”. This decomposition is Myers’ STS
division[7]®, where two intersecting points “Time” and “Hands” are called the most
abstracted points from the leftmost input “1 Sec clock” and from the rightmost output
“clock face” respectively”.

This hierarchical decomposition creates a tiny flowchart, which appears in Figure 2.
A compressed barrel symbol (starting symbol) above the first children function “Obtain
time” is the starting point of the flowchart and the line has an arrow at each end. It
passes through the first function, the second function and the third function, and then it
terminates at another compressed barrel symbol (terminating symbol) above the third
function. This tiny flowchart is created at each detailing to be a part of the parent
concept attachment, but not mentioned hereafter.

In the third-level, a child “Obtain hands” is taken for showing the detailing. Both
input and output data of “Time” and “Hands” are detailed or hierarchically decomposed
to respective children data. Using a corresponding pair of each input data and output
data, the detailed data flow consists of three parallel elementary data flows. It is like a
Jackson’s program development[8].

In the fourth-level, one child “Obtain minute hand” is taken for showing the
detailing. As “Obtain minute hand” is detailed or hierarchically decomposed to
“Obtain degree of minute hand”, “Obtain width of minute hand” and “Obtain length of
minute hand”. In “Obtain degree of minute hand” it is found that the degree of minute
(in a 360 degree system) may be obtained by multiplying 6 times of the minute of time.
Thus, this elementary data flow may be converted to a source code block of performing
the mathematical operation of degree of minute = 6 x minute of time, in either source
code or LSI gate. This is an implementation problem, and the preceding
decompositions are common to both software and hardware.

As a result of these investigations, it becomes clear that:

® Design consists of repetitive detailing and one conversion.

® Detailing is performed by hierarchical decompositions of concept using

natural language (including scientific and technical terms), thus decomposed
concepts becomes more detailed, clearer, and finally minute.

® Conversion is a simple replacement from a detailed concept to a corresponding

block of another implementation mean.

2 HIPO[6] by IBM uses a A4 sheet in landscape position of three columns of I (Input), P (process) and O
(Output) with the title box in the left side head of the sheet. A function in the title box is hierarchically
decomposed to a detailed data flow, who’s elementary data flows (input data is written in a square box in I,
the processing (function in ESD) in a square box in P and the output data in a square box in O to form an
elementary data flow) form a detailed data flow. A function of an elementary data flow is hierarchically
decomposed, detailed and written in the following pages. A description is still at macro level and next stage
programmers read HIPO and convert to programs.

: Myers thought that STS division arises only in case of {external input, function for the processing and the
external output}. In ESD, however, a STS division is possible in all cases.

* In this example, Time is the farmost but remaining concept from the input data, while Hands is the farmost
but remaining concept from the output, respectively.

Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case 41

These apply in other engineering fields, and the above three are universal principles of
human nature. But, there are quite different views on design in so-called Software
Engineering. The base there is natural language, which plays substantial roll in all
human conduct.

Figure 3 shows other hierarchical decompositions. Figure 3.a is a high
(management) level example. It was found by Clausewitz empirically and published in
1832[9], and has been regarded as a principle for planning war in Military Science.
From the top statement, it is repetitively decomposed hierarchically. It is well known
that the hierarchical decomposition continues even down to the elementary actions of a
soldier. Figure 3.b is human physical work. An the action is repetitively and
hierarchically decomposed to more detailed actions’. This decomposition has been
empirically used in hardware industry and used as a basic principle of controlling the
human process for hardware production. These are achieved by natural language in the
human brain for achieving a target. Thus the authors named these actions “Human
intentional activity”, which govern almost every aspect of human conduct.

Occupy X | Commander b Take a
a island picture

[Navy Airforce | Army I ! 1
Approach Y Stike | |Landsoldiers| rEpCos Focus on Press the
miles to X defenses fi[ld bnng the picture the tz rget shutter
island island under frame b

control utton

r \ i I 1

o Stk Direct a Half-press wait until
ya Fire decoy e camera shutter

10 meter .. anti-air locked
: missile o to the target{ [button

high missile

Figure 3. Various intentional activities

1.2 Document enables high quality and stable characteristics

In the previous 2 sections, the structures of ESD have been introduced. This section
discusses how documents effect the “design process”. Figure 4[1] shows a hierarchical
process of a development, and the first half of the development, design, is closed up. In
this system, a (design) work, intersected by its input and output is called “(design)
process”, as is a case of an elementary data flow. Figure 4 shows the “design” at the top.
The input is a specification and the output is the resultant source code. It is like so-
called Programming.

The right side figure shows the variation. It is like a vibrating string, with both
edges constrained. At the top, the largest amplitude shows the largest variation. In the
next level, it is hierarchically decomposed to lower processes of data flow design,
flowchart design and coding. As this process is partitioned to 3 processes, the

° In Figure 2 and 3, all decompositions are hierarchical and the decomposition rate is similar in all three. Past
experiences show the average decomposition rate is a little less than three. A theoretical calculation of a
simple case shows e = 2.71828... gives the best performance, but the generalization has not yet been made.
Considering Cognitive Scientific experiments report the human mental processing time becomes larger
rapidly, as the number of decompositions increase. Also the time becomes longer rapidly, as the
decomposition rate approaches to zero, due to the increase of the number of stages of mental processing
decomposition. By multiplying these two factors, the value, a little smaller than three, is the most optimum.

42 Z. Koono and H. Chen / Principle of Documents for Systems Design — Part I: Non-Sequential Case

intermediate 2 points are added to strengthen the constraints. As the diverging power is
constant, the variation is decreased to 1/3. If the variation is still large, again the lower
processes are hierarchically decomposed to three; the variation is decreased to 1/3 of
the previous namely 1/3° = 1/9 of the initial. This is a control method of the variation of
the characteristics of design by “divide and conquer” using documents. This manner of
controlling a process has been used popularly in hardware production, and a strategic
key for “Hi-technology”.

I Development l

Process

2] Design g" e e
---------- o[I
s~ N s X
o Design| check ~—e &_’_j
+ Pt — 1 T v
1/3 Data flow Flowchart =1 | Coding
Residual ign design | | L Al >
€ - -
defect l Pure] Desk Purd Desk a Pure] Desk 13
: [
.——"’M -
- I T -
Func- = G
A) enerl Detailed | Ml| =========-- >
R tion D FIC X 2
‘f;e:ld“al 1732 design design design v
e m<-— [Pudpesk Pur] Desk PurDesk

Figure 4. Divide and conquer

Documents contribute to the high quality of a design. In Figure 4, all processes are
partitioned to pure and desk at the bottom of a box. “Pure” means plain design without
any checks, and “Desk” is check or test after the preceding “Pure” design. The desk
check is an “inspection” in Statistics. The design result includes inevitable errors at a
rate of Ed. Following desk check errs in two ways: the error rate of the Ist kind of error,
mistaking good item as NG, is expressed by Ecl, while the error rate of the IInd kind
of error, mistaking NG item as good, is expressed by Ec2. If an error is found during
desk checks, the case is examined carefully. If it is OK, the previous NG is cancelled,
thus most of the Ist kind of errors are corrected. The IInd kind of error, however, is
unidentified, and it passes through the check. The residual defect intensity after the
desk check is Ed*Ec2, and the attenuation of defect by the desk check is Ec2. (A series
of global test, Ec2 is around 1/10.)

Let us suppose that a process is divided to N sub-processes of equal number of
mental operations during a sub-process. After the division, the probability of defects is
decreased to 1/N. Similarly, the second error of the check is also decreased to 1/N, and
as there are N sub-processes, the total residual defect intensity is reduced to 1/N. This
control has contributed to the improvement of quality®. The left side bar graphs show
this.

These are rather theoretical calculations. Let us review the actual data to show how
documents contribute to the high quality. In ESD, a hierarchical decomposition is the
adequate small progress of design. Figure 5[1] is a result of this case. The design was
made using HIPO, and the number of source code was 147 lines of C code. The desk
check was a rigorous check confirming that a parent is correctly decomposed to the
children. Checks were made as design advanced, and the checks were made 7 times.

6 Many people, in their student days, enjoyed the profit of this principle by following teachers’ advice
“Record your answer step by step. Then check the process carefully and rigorously, one by one.”

Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case 43

The vertical axis shows the

accumulated number of claims, A% ; Total 47
and the bar graph shows the M- 2 Found in test
breakdown of the total claims. *f ~ 13 Logic error
The curve is the bug accumulation 3 | 5 haccutate dingram
curve. | :

. 6 In correct naming

At first, claims were not about 29 Number of checked

design, but mainly on “how to out at each time — 21 hadequate writing
write HIPO”. Next, claims were 4 ﬂ ﬂ I

on natural language expressions.
After these, some claims might
cause errors in processing logics. .)
At the 6th check, all the checks Figure S. Check in small steps

and the amendments on them

were finished, and thus the desk check ended. The designer then advanced to the
coding, targeting ‘no errors’. Unfortunately, two coding errors were found in the
machine test. Among all claims, 13 might cause program errors. Adding 2 bugs found
in tests, the built-in defect density was (13+2)/147 = 102 E/KLOC, which is the typical
value rate of a junior in university. But, the desk check rate was 86.7%. As the practical
upper limit is around 80%, this achievement was remarkably good. The key for
achieving this high rate, is the documents and the checks at each small step of progress.

1 2 3 4 5 6 17
Nurrber of times of Design Review

1.3 Documents improves traceability

Traceability in design is to trace backward starting from field claims or some abnormal
behavior to discover where the problem was built in. The following explains how it
may be done. Figure 6[10,1] shows the development process of a product. Let us
suppose a defect was built in process k, but it was not found and corrected in the
following tests. The defect appears in the field. Customers experienced the problem,
and among them some reported it to the field support.

The claim support people accepted this case and succeeded to recreating the
abnormal behavior (1). The designer responsible for this reads the report, and locates
the faulty part and repaired the error (2).

The next step is to find out where and what caused the error. Starting from the erred
code, the checker traces, or goes up, to the earlier design documents.

The problem is how to identify which process builds-in the error concerned.
Examining Figure 6, it is found that

The error built-in process k is a process, having the following specialties:

The output document of process k has some sign of the error, but

The input document of process k has no signs of the error.

Therefore, starting from the erred code (2), trace upward toward the error built-in
document (3) in the erred process k (4). Based on these deeper inside the human error
is analyzed and the countermeasure to avoid repeating is achieved.

44 Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

L Corporate philosophy I

Company rules

X
l Product standard Il—l

Customers

Abnormal
behavior

Figure 6. Tracing

2. Design documents

2.1 Structures of development documents oo
In Section 1, the structures of design have been 8°\
described. In Section 2, the structures of B \\\ Both
documents are described. The practical A
requirement of documents is to compress the ;E:
volume efficiently. BN

The first strategy for this is to follow the & \\ Fighres b
product’ nature. A system document is organized < z e
hierarchically ~ following the product’s | Sentences only |
hierarchical structure, mentioned earlier. As all TR R TR e T T
parts part of a system are mutually dependent, Time clapsed after hearing
this assures the compactness of the document. Figure 7. Forgetting curves curves

The second strategy is to use impressive
drawings ~ figures, and the third strategy is extensive use of tables and forms. These
aim at a substantial decrease of natural language sentences. They are explained later.

It is well known that human memory relates deeply to human understanding. Figure
7[2] is from a study in the US Air force. The vertical axis shows the percentage of
remembered objects, and the horizontal axis is time after presentation. The
presentations were made in three cases.

Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case 45

1. Presentation by sentences only

2. Presentation by figures only

3. Presentation by both sentences and figures
The negative decaying curves are like the famous Ebbinghause’s forgetting curves[11].
When both sentences and figures are used, the percentage remembered is much higher
than each of both. This shows that synergy’ arises, when both the figure and the
sentence agree well on a target. It is no wonder that movie or video gives best
understanding and memory than a book or slides with audio.

A table consists of pairs of some target and its declaration. As each is mutually
dependent, only paired relationship exists. Therefore, if each declaration is correctly
written, it is OK. A form is similar. In the simplest case various targets are listed, and
just writing checks in a space is enough. A general style of a form has several spaces,
where, how and what to write is determined. These simplify the answer and the
treatment of thus written information.

2.2 Data flow

Data flow is the most important document. Figure 2 shows a sample of a clock from the
initial specification of one word of “Clock” to the last one before coding. Reading and
examining this figure, a reader understands
the design much more deeply than reading
a textual explanation of the design, and
remembers it better. Various synergies
exist in the figure.

1. Elemental figure: graphic symbol

with text.
2. Unit concept: easy to remember 3 b

elementary symbols with text. Fimelp /] Cha fedy{ Fencs
3. Human memory-friendly .
. . . . Mn Qo
hierarchical relationship: a parent "(g;mT .
and its three children in both He hard g

4, Multilevel hierarchically structured: || Lbad

from clock to the minutest just \ |S ay binsee

function and data. i Obtainrrin J_I IH Wil

before source code. As an example, —
sophomore students understood this Figure 8. Parent and the children pairs
design and remembered it longer

Figure 2.

Athough Figure 2 is fitted for an entire view, a document for each step of design is
also necessary. Figure 8.a and b show the unit decomposition of “Clock” and “Obtain
time” respectively. Using these, a designer checks if a parent is correctly decomposed,
rigorously, and strictly. In it, each parent is shown in duplication. Possible problems
may be avoided by marking the parent’s information, and a CASE tool administers the
entire information.

7 In a technical context, it means a construct or collection of different elements working together to produce
results not obtainable by any of the elements alone. (Wikipedia USA)

46 Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

2.2 Data specification table

A development starts from a specification (clock), which is defined by an elementary
data flow. “Data and algorithm” are two largest parts of the program. In the case of the
design of a clock in Figure 2, the whole algorithm is shown by the hierarchical data
flows of the figure, but the whole view as well as each data view is also useful.

Figure 9 shows a
data chain of “Hands”
completed in Figure 2.
As is shown in the
figure, it has grown up
from the initial “Hands” g
to this chain. This
hierarchical data chain
impresses the reader <
more strongly. Another
important data in
“Clock” is “Time”, as
both are the most
abstracted data of “Clock”. If the decomposition continues, further data chains will
appear. Temporary and non-relevant data do not need such a data chain.

Table 1 is a data specification table, beginning from “Hands”, and it grows as the
design advances. (Note the growing steps in the example. Arrow lines of second and
third show the advance, and the last block is the final form of the table.) Figure 9
shows the detailing process. Thus, the pair of both data chain (e.g. Figure 9) and data
specification table (e.g. Table 1) are representing documents in a system development
document. (For less important data, a data chain is not necessary, and a small structure
diagram is enough.)

The table consists of four columns. On the top line of the table, there are the names
of each column of lines:

A. Data name and the structure: A small data structure visualizes the structure,
useful in cases where a data chain is not shown.
B. Definition: A statement defines the data. A SE must write this directly,
clearly and correctly with utmost care.
C. Attribute: Each attribute (e.g. data type, length etc.) has its own area. A
column is for each term of the attribute.
D. Initial value: Value at the starting time.
As the design progresses, each column is filled in one by one. In the SE stage, any
names must be in natural language, including engineering and technology, but popular
abbreviations may be used. By using natural language, people can review any other
field, and visitors from other fields can also review and discuss them. Moreover people
are obliged to explain their work to their bosses, top management and clients. It is
strictlyprohibited to use any local language for software and programs. Based on these
SE documents, software people perform the rest of the development work, but they
must rigorously follow SE documents, as they are the specifications. If something is
wrong or questionable, the person concerned should talk his/her boss first, then discuss
the matter with the writer of the document in concern

(Hour

Hands Hour Width

JAngle
Length, | Hands Minute.L ength
Width Hands MinuteWidth

lour

Second £

(Hands 1\
(Minue

Hands.Second. Angle

——»(_Hands.Second.Lengt
Width Hands.Second. Width

Second

Figure 9. Hierarchical data chain

7. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

Table 1. Data specification table

Data specification

Clock program Hands
‘Name and structure (mnemonics) ! Definition |Amibuﬁe | Initial valu4
/‘ Hands Time information ‘ l l
Second Hands ¢ Time information
Hour Hour hand. Starting from 0, increments 1,2, .,
Hour upto]2,
'§ Ainit PIMinute |Minute hand. Starting from 0, increments 1, 2, .,
£ Kecond 1 60.
/ \ Second | Second hand. Starting from 0, increments 1,2, ..
up 0 60.
Hands Time information
Hour Hour hand. Starting from 0, increments 1,2, .,
up Tg 12
Angle | Angle from the vertical line, starting
Third from 0, clockwise up to 360 degree.

Hands

Minute | Minute hand. Starting from 0,

increments 1, 2, .., up to 60.

Second | Second hand. Starting from 0,

10 60

Minute

Minute hand. Starting from 0, increments 1,
12

Angle | Angle from the vertical line, starting

from 0, clockwise up to 360 degree.

Minute | Minute hand. Starting from 0,

increments 1,2, .., upto 60.

Second | Second hand. Starting from 0,

increments 1. 2. .., up to 60.

Second

Second hand. Starting from 0, increments 1,
2...up 0 60

Angle | Angle from the vertical line, starting
from Q. clockwise up to 360 deg

SIS

Minute |Minute hand. Starting from 0,

increments 1. 2. ... upto 60.

Second | Second hand. Starting from 0,

increments 1,2, .., up to 60.

Software people’s job is similar to those in hardware production work. Coding may
be automated easily using the authors’ patent[5,15], which is like production design in
a hardware production group. Differing from past software design, they take all the
responsibilities as hardware production groups do currently. They have to keep to a
specified quality level, specified delivery, and assigned cost. In order to keep these
assignments, they are also responsible fnot only for their works’ automation but also
for corporate level automation, including the various systems concerned. This presents
an important opportunity for software people to be treated as an equal member of a

company, and to be promoted fo top management.

47

48 Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case

2.3 Control flow

A program consists of components for data processing and a control flow for executing
these components as intended. The flowchart has been the earliest tool for the control
flow. Although it is simple, it has some defects, such as inefficient expression of loops
and a “go anywhere” freedom. After the introduction of a structured principle, various
structured charts have been proposed. Their greatest merit is good conformity with the
structured principle that makes human thinking easy.

A structured chart is based on a structured principle for using the following three
categories of components: concatenation

(for a serial execution of functions), C stat)

selection (one out of many) and

iti for th . A i i |
repetition (for the loop). Any kind of Concate. Function 1

structured chart is a good tool with)
nation

natural language for making the control [Function 2 l :lFunction 3
flow easy to understand. Unfortunately, ‘ Yes

in 1986, ISO tried to standardize ggjecion | Condition of < Function 4 |

structured charts but failed®, and just a selection

comparison chart[12] was left. Appendix Noﬁl Function 5 l

is an abridged table.) Function 6 |
Figure 10 shows the main symbols of ~Repetition
a structured chart, named PAD (Problem Condition — Function 7 l

Analysis Diagram). In it, the left-side]
vertical bold line is the route of the Function 8 |
control flow to go-downward. The initial End ‘
two functions are a sample of
concatenation. The next wedge shape is
a selection. It is the usual practice that an upper line is the YES case. In YES, the
control goes to the right and executes two functions, and then the control goes back to
the selection and goes down out of the symbol. In PAD, it shows detailing to go to the
right side. The next is a repetition, where the first box shows the condition to repeat
and the right side extension goes to what should be done. As a result, the shape of a
PAD figure looks like the image of a coded source code block.

The problem of control flow is a structural problem in a system. In computer
engineering, a central processor (MPU) consists of a “data structure” for data
processing and a “control structure” for controlling the data processing in “data
structure”. There are two technologies of the “control structure”. The conventional way
is “direct implement” using logic gates, while another is a “micro-program control”, in
which micro-program orders open and close of gates or mode of operation. In the latter,

Figure 10. PAD

8 Unfortunately, the structured chart had been misunderstood as a tool for programming, and
research people have poured their best ideas to it. As a result, all the CASE tools became very
susceptible to programming language and the environment, and they suffer from changes by the
rapid growth of programming languages. As all the delegates did not want to change own system,
there was no hope of standardization. Thus structured charts with the CASE tool had perished,
and at present most people still read the list directly. International standardization brings
enormous merits, but it is very difficult. The level of standardization must keep to the lowest level
so that all delegates agree, the rest must be left as options. As structured charts are one of the
influential tools for human thinking, it must be revived as a tool for systems or as an SE level tool
in the future, and any programming language problem should be an option level problem.

Z. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case 49

21.0 Residual defect
20 | a Total built-in intrensity b
) intensity 100=— (E/KD)
Defect built- -
L in - Unit test
intensity 11.99 - Start In'legr-
E/K1 e m 3_0m__a110n
(E/KD) 78 2.5 | test
10 [~ ; B
1
: Lol 50 Labo-
5.06 : = ratory
| o224 = test
364 335 35 !rrrnl - L
* S 10.43 : e — CEaN Y
. . Y 1 . - ™
0 f—il A e Yoo 156 | | 03
Class Subprog. Module Code Code
Subprog. Module Segment read review

Figure 11. Defect intensity level diagrams

as control becomes easier, a very complicated control may be designed, developed and
used widely as is seen in present day processors.

Similarly in software, there are both “data structure” and “control structure”. “Data
structure” is an assembly of components for processing, as shown in Figure 1. “Control
structure” controls these components to perform all the systems functions. In a simple
system, a control program controls all components. In the case of a more complex
system, the system must be divided into three parts by Myers’ STS division. There are
input processing subsystems, internal processing subsystems and output processing
subsystems. Except for each control, there is a system control over it. As the system is
divided, all controls must be easier. Another is to use the Finite state machine for
control, namely to design the system as an embedded system. It is the ultimate design
of systems[13]. At present most processors are micro-program controlled, likewise
FSM control should be the future principle for control.

3. Discussion

What users in industries as well as ordinary people need is practical improvement of
quality, cost and delivery. The following is a record of a project in the middle of the
1970’s, which features a very low defect intensity, achieved with rich documentation
and extensive desk checks. Figurel1[1].a shows the defect intensity of the design phase,
and Figure 11.b shows the defect intensity of test phase.

In Figure 11.a, defects are built in at each pure design, as shown by the upward-
pointing arrow. Next defects are removed in the following desk check, as shown by the
downward-pointing arrow shows, and thus the residual (built-in minus removal)
remains. Thus repeating, the residual defect intensity goes up little by little, but it is
only a 3.1 defect / Kline, which is only 14.3 % of built-in defects. They checked out
82.5% of the built-in defects by desk checks after design. Usually, it is very difficult
for a team to achieve the desk checkout rate of more than 80%.

The reasons why they achieved such a high desk checkout rate is as follows; firstly
rich documentation, secondly desk checks, and thirdly the design progresses in smail
steps enabling such documentation and desk checks. From the system viewpoint, they
took a structured design, and a hierarchical document system, and did rigorous desk

50 Z Koono and H. Chen/ Principle of Documents for Systems Design — Part 1: Non-Sequential Case

checks after each design. As the progress is small, the range of desk checks is also
narrow, and thus the checkout rate became high.

In Figure 11.b, it started at 3.1 defects/K1. Figure 11.b show the decrease of defect
intensity as the test progresses. As a test attenuates, defects at the IInd kind of error,
and each test attenuate defect intensity at a certain rate, and the total behavior is shown
on Logarithmic scales.

This was a development in a GTE laboratory in the middle of the 1970’s. These
were reproduced from their paper and their internal documents. One of the world’s best
records ever published. All the people involved were excellent, and their performance
was also excellent. What we can learn now is their excellent process, enabled by
hierarchical documents with structured design and extensive desk checks using
documents, both prepared in small steps of design. What they did one third of a century
ago, we can do the same again.

4. Conclusion

This paper discussed two aspects of a software development in the Systems
Engineering phase.
1. Design
Design is a human intentional activity, and there are many aspects which are
common to other intentional activities. In order to enable good performance
during design, there is much to be learnt from the example of others.
2. Documents
In other industries, most documents for a design consist of relatively few using
drawing and figures, with least number of natural language sentences. The key
is synergy t both drawing and text.
A similar advance is also possible in software in the System Engineering phase.
3. Learn from other engineering fields
Fundamentally, there is no reason that programming or software is different
from that of other engineering fields.

Acknowledgements

The authors are thankful to those who participated in the Software Creation Project in
Saitama University for their contributions. They also express their sincere thanks to the
all other people who cooperated, especially the teachers from whom they learnt and
experienced so much. They are thankful also to Mr. Daniel Horgan for his careful
checks and elaborate collections of their English.

References

[1] Koono, Z. Chen, H. and Abolhassani, H., An Introduction to the Quantitative, Rational and Scientific
Process of Software Development (Part 1 &2), Software Methodologies, Tools and Techniques 2007,
pp.361-371 and 372-390, H. Fujita and D. Pisanelli (Eds) New Trends in Software Methodologies,
Tools and techniques, 10S Press, 2007.

[2] M. A. Broner, Planning and Preparation of Presentation, in R. M. Woelfe (ed), A Guide for Better
Technical Presentation, IEEE, 1975.

[3] Japan Users Association of Information Systems and Ministry of Economy of Trade and Industry,
Japan, Report of Software Metrics of Information System Users: Year: 2006, Japan Users Association
of Information Systems, 2006.

[4] Koono, Z., Abolhassani, H. and Hui Chen, A new way of automatic design of software (Simulating

[5]

(6]
(7]
(8]
[
(10]

[11]
(2]
(13]

(14]
(15]

7. Koono and H. Chen / Principle of Documents for Systems Design — Part 1: Non-Sequential Case 51

human intentional activity), pp.407-420, H. Fujita and M. Mejiri (Eds) New Trends in Software
Methodologies, Tools and techniques, IOS Press, 2006.

Koono, Z., Ashihara K. and Soga M., Structural way of thinking as applied to development,
IEEE/IEICE Global Telecommunications Conf. 1987, pp. 26. 6. 1-6, 1987.

IBM, HIPO-Design Aids and Documentation Technique, GC20-1851-1.

G. J. Myers, Composite/Structured design, Litton Educational, 1978.

M. A. Jackson, Principles of Program Design, Academic Press, 1975.

Carl von Clausewitz, Vom Kriege, 1832.

Koono, Z. and Soga M., Structural Way of Thinking as Applied to Quality Assurance Management,
IEEE COMSOC, IEEE Journal on Selected Areas in Communications, Vol. 8, No. 2, pp. 291-300,
1990.

Hermann Ebbinghaus, Uber das Gedéchtnis, vVerlag von Dunker & Humbolt, 1885.

1SO, Information processing-Program Constructs and Conventions for Their Representation, ISO 8631.
(Also Japan Industrial Standard (JIS) X 0128.)

Zenya Koono and Hui Chen, The Ultimate Systems Development Method Based on Finite State
Machine, Software Methodologies, Tools and Techniques 2008, pp. 126-145, H. Fujita and Imran
Zualkernan (Eds) New Trends in Software Methodologies, Tools and techniques, IOS Press, 2008.

ISO 8631. (Also Japan Industrial Standard (JIS) X 0128.)

Zenya Koono, Hassan Abothassani, Hui Chen, Priority date, 2002. 5.27, Published in Japan, 2002.12.
5, International publication number W02002/ 097727. China Paten: ZL 02 8 10859.0, Date: 2006.7.26.
U.S. Patent: US 7,480,642 B2, Date Jan.20, 2009.

